Article

Navigation alternative in the event of GNSS failure due to jamming or spoofing


by TRENZ GmbH - published on 7 April 2025 2101 -

Credit: DLR - German Space Agency

R-Mode – Navigation Safety Without Satellites: A Terrestrial Backup for Commercial Shipping.

What happens when GNSS fails? In maritime navigation, this isn’t a hypothetical scenario – it’s a growing risk. Spoofing, jamming, and GNSS outages are increasing, especially in the Baltic Sea region. A failure can cripple navigation systems – with potentially serious consequences.

The answer: R-Mode – a terrestrial backup system that operates independently of satellites. Developed for real-world maritime use. Tested in the Baltic. Ready for the next phase.

Satellite-based navigation via GPS, Galileo, or GLONASS has become an essential part of modern maritime operations. But what happens in the case of deliberate interference (jamming), spoofing, or system failures? For maritime professionals such as harbor pilots, VTS operators, and bridge crews, the failure of satellite navigation systems can have severe consequences—particularly in congested traffic situations, during port approaches, or in narrow shipping lanes. This is exactly where R-Mode (Ranging Mode) comes into play as a terrestrial backup navigation system.

What Is R-Mode?

R-Mode is a radio-based navigation system that utilizes existing maritime radio services—primarily medium frequency (MF) and very high frequency (VHF) transmissions. It determines a vessel's position through the analysis of the signal travel time of continuously transmitted radio signals, applying the principle of hyperbolic navigation (similar to LORAN-C).

Controlled modulations are overlaid onto existing transmission systems, such as DGPS, DGNSS, or NAVTEX stations. Special R-Mode receivers on board analyze signal phases or time differences from multiple transmitters to calculate a two-dimensional position, typically accurate to within 10–20 meters—entirely independent of satellite signals.

Pilot Projects and Standardization

Since 2017, the German Aerospace Center (DLR) has been operating an R-Mode testbed in the southern Baltic Sea in cooperation with European partners. This testbed currently consists of eight transmitters located between Helgoland and Stockholm. Based on a new multilateral frequency agreement, the system is expected to be significantly expanded by 2026. The goal is to establish a standardized, interoperable R-Mode infrastructure across Germany, Poland, Sweden, Finland, and Estonia, with internationally harmonized signal structures.
R-Mode station. Credit: DLR - German Space Agency
R-Mode station. Credit: DLR - German Space Agency
R-Mode station. Credit: DLR - German Space Agency
R-Mode station. Credit: DLR - German Space Agency

Technical Background and Advantages

  • Frequency ranges: Mainly MF (283.5–325 kHz), selectively VHF.
  • Positioning method: Time-of-arrival and phase-difference analysis of signals.
  • Resilience: Independent of GNSS; robust against jamming and spoofing.
  • Cost efficiency: Reuse of existing coastal radio infrastructure.
  • Availability: Particularly relevant for coastal areas and high-traffic maritime corridors.
R-Mode supports the IMO and IALA e-Navigation strategies aimed at improving the resilience of Positioning, Navigation, and Timing (PNT) services. Looking forward, R-Mode is also expected to play a role in multi-sensor data fusion as part of integrated bridge systems.

Outlook

For pilots, navigational officers, and port authorities, R-Mode represents a strategically important building block for maintaining navigational capabilities in the event of GNSS failure. The planned operational readiness of the expanded Baltic testbed by 2026 marks a major milestone toward establishing a satellite-independent, resilient navigation infrastructure for European commercial shipping.
What's your opinion on this?
Login or register to write comments and join the discussion!
Read more...

Video GIDAS - GNSS Interference Detection & Analysis System

published on 29 April 2021

OHB Digital Solutions GmbH develops systems for monitoring the GNSS frequency bands as well as detection, classification and localization of intentional or unintentional interference sources. Many stakeholders and applications as well as critical infrastructure providers are relying on GNSS to provide their services. Since Global Navigation Satellite Systems (GNSS) are widely used in safety and value critical applications, GIDAS detects, classifies and localizes any GNSS interference...

0

Article Operational notes & recommendations on Portable Pilot Units (PPU)

by United Kingdom Maritime Pilots Association - published on 2 December 2021

OPERATIONAL NOTES AND RECOMMENDATIONS by UKMPA, February 2017
The introduction of modern lightweight Portable Pilot Units (PPU) for use during pilotage has proved to be another major advance for pilotage operations worldwide.

1

Article New Study on GNSS Interference in the Baltic Sea

by GPSPATRON Sp. z o. o. - published on 12 March 2025

GNSS interference has become a growing challenge in the Baltic Sea, affecting maritime navigation, aviation, and critical infrastructure. While numerous datasets and services, such as gpsjam.org, spoofing.skai-data-services.com, and flightradar24, report high-altitude GNSS interference based on ADS-B data, there is a significant lack of studies focusing on ground-level interference.

3

Video IALA Port & Waterway Risk Seminar - Chapter on Simulation by Knud Benedict

published on 22 October 2021

This video is an extract of some elements from lectures by Knud Benedict on "Simulation" as part of the seminars provided by the IALA World Wide Academy on the use of the "IALA Toolbox for Port & Waterway Risk Management".

0

Video Why Do Ships Have Rope Ladders?

published on 4 February 2024

From "Casual Navigation": In this video, we investigate the Pilot Ladder. It is a crucial piece of equipment, used for embarking and disembarking a harbor pilot at sea.(contains advertising)

0

Article MARS-Report: Paltry PPU position predictor

by The Nautical Insitute - published on 18 August 2023

To monitor the vessel’s progress, the pilot had set up his portable pilotage unit (PPU). He had connected the rate-of-turn generator to the vessel’s pilot plug and had set a variable range marker on the radar with a radius of 0.5 nm.

0

Article New Website PilotladderSafety.com

by Marine-Pilots.com - published on 30 June 2020

Recently, Herman Broers launched the website PilotladderSafety.com.
This website’s goal is to increase pilot ladder safety by showing good practice examples regarding the rigging and use of pilot ladder arrangements . Do it right the first time!

1

Video Mindfulness in Shipping Webinar

published on 24 July 2020

In this webinar, Rev. David Reid, AFNI looks at why we need to learn this skill and put it to work to promote safety at sea and the wellbeing of our colleagues. Are we mind full or mindful?

1

Article Safehaven Marine developing new 2022 ‘All Weather’, self-righting pilot boat.

published on 30 June 2022

The new design, is based below the waterline upon our Barracuda deep ‘V’ planning hull, fully proven in service with versions operating as pilot and S.A.R. craft.

0

Video Viking Mars Cruise Ship - Pilot Boarding

published on 22 September 2022

The Viking Mars is a brand new cruise ship, built this year (2022). While it is a relatively small ship when it comes to cruise liners, it's still an imposing vessel. It's big enough to enable them to fit a planetarium, fitness center, hair salon, a spa, and the usual shops, restaurants and cabins. We have filmed quite a few vessels coming in and out of Holyhead port now, and the Viking Cruise Line ships are, without doubt, some of the most classy and good looking vessels about. Lovely...

0