Video

Theory behind Turning dynamics of ships


published on 6 May 2020 2304 -

Found on YouTube. Created by
"ISSIMS GmbH - Marine Prediction Technology"

SAMMON Lecturing Video describing

"Theory behind turning dynamics of ships"

-------------------------------------------------------------
SAMMON - the IDEAL tool to identify manoeuvring capabilities of a ship - SAMMON - learning the EFFECTIVE way

Comment by Gunter Schütze via LinkedIn:
"Prof. Benedict a very interesting video by HS Wismar / Maritime Simulation Center Warnemünde ( MSCW) & Innovative Ship Simulation and Maritime Systems GmbH (ISSIMS). Excellent and understandable the dynamic effects of the forces and moments in turning circle explained. A really good illustration for students, nautical officer and Captains to lead them to the dynamic basics and to refresh the knowldege. I can only recommend this video. Thanks for sharing."
Germany, Wismar

Join the conversation...

Login or register to write comments and join the discussion!
Knud Benedict Germany
on 21 December 2020, 11:49 UTC

Thanks to Gunter for the recommendations and Michael for bringing in ideas and questions. To answer your questions, I like to explain the following:
1) The transverse force Y(ß) can be explained by two models:
a. Either it can be seen from its nature as a Lift force, i.e. the same force who lifts an airplane wing up in the air, works now horizontally on the ship hull due to the drift angle ß. It is generated by the uneven force distribution caused by an additional circular flow around the body (wing, or here the ship’s hull). This lift force has it maximum close to the wing nose – this means for the ship it is working more to the bow, so it turns the ship: I made an additional movie on that effect at out ISSIMS website on YouTube (“Effect of Drift Force and unstable moment”, https://youtu.be/agQPMQNwhxU.)
b. A second way is to look at the effect of the transverse speed along the ship length (This as named as “Slender body theory”). You are right that the transverse speed distribution is constant. However, the force due this inflow is not constant: because of the friction in the flow there is a boundary layer around the ship which is getting thicker to the stern and therefore the transverse forces are smaller at the stern than on the bow – this model also explains why the bow turns to increase the drift angle, which is called as unstable moment.
2) The "additional force at the stern" Y(r) is not just the aft component of the above evenly distributed drift force. The rotation /Rate of Turn creates a linear transverse speed distribution with maximum at bow / stern and minimum / zero at the ships center. This has an effect which can be explained by the wing/lift model under a) as curved centerline of the wind profile
3) You are right: A centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path - so in case of the ship motion on a circle these are the forces due to drift Y(ß) and turning Y(r). These forces are balanced by the centrifugal forces (which is Ycentrifugal in the movie). The ship is able to move in a steady state motion - This is also an equilibrium condition at constant speed and also constant rate of turn.
I do hope my explanations are of some help for professional as you are. And I should underline that these are attempts of us as humans to understand the nature – that’s why I mentioned two models (there are even more…). And they are not “Laws” - even the equations of Newton and Einstein are not Laws, but they represent our current views and approaches to describe the nature with our brain in order to think and plan ahead (– and have to be checked and approved continoulsy in daily life). In this way I made some comments in my movie about “digital twins” as key maritime innovations (https://youtu.be/jYRq6xRrVUw) you can have I look if you like.
[show more]
0

Mr Michael Nicholson Shipmove Ltd., United Kingdom
on 7 May 2020, 09:43 UTC

I either; don't fully understand, or disagree. 1) Why must the working force (transverse force) Y(B) be acting close to the bow. The rudder is providing a moment, I don't see why/how the ship also provides a turning moment. The drift angle of the ship to its bodily movement is uniform. Surely the forces would be distributed evenly?
2) Is the "additional force at the stern" Y(r) not just the the aft component of the above evenly distributed drift force.
3) The use of the term Equilibrium, is this correct? For an object to describe an arc or a circle requires an acceleration towards the centre, caused by centripetal force. This is not in equilibrium. Equilibrium would be a straight line at uniform speed.
0

Read more...

Video Pivot Point Demo - HS Wismar

published on 10 July 2020

SAMMON Lecturing Video describing
"Pivot Point Demonstration"
-------------------------------------------------------------
SAMMON - the IDEAL tool to identify manoeuvring capabilities of a ship - SAMMON - learning the EFFECTIVE way

0

Video SAMMON Intro Ships Manoeuvring Predictions

published on 11 July 2020

SAMMON Introduction into Ships Manoeuvring Prediction
- newly made Video to display the principles of SAMMON

0

Video Knud Benedict Presentation on “Digital Twins” at IMLA SMU Seminar

published on 28 October 2020

This is the recording of the presentation with the title:
“Digital Twins" as Key Maritime Technology Innovations for MET - and for Operation of Intelligent Ships
It was held at the MET Training Course by Shanghai Maritime University on Oct 27 2020 on the occasion of IMLA 40th anniversary

0

Article Updated App: "Bollard Pull Calculation for Marine Pilots"

by Baykal YAYLALI - published on 17 June 2024

A handy and simple tool to determine in a minimum time what is really needed as tug assistance, is the Bollard Pull Calculator which calculates in an approximate way the total required tug power for ships in various conditions of wind and current. This tool can be loaded as an app on the smart phone.

1

Video Simplified Vector Approach for POD forces – samples and limitations

published on 23 February 2022

This movie belongs to the operation of ships with POD propellers and discusses the approach for using a vector model from only the pods’ thrust forces as resulting force to imagine the potential effect of the pods on manoeuvring motion.

1

Video Chart Projections and Chart Accuracy - ECDIS

published on 11 July 2020

With the increasing accuracy and reliability of navigational receivers, this part of the video module will try to establish a better understanding of the mathematical definition of the Earth’s surface and mapping of this curved shape onto a plane surface. Chart Projections and Chart Accuracy https://youtu.be/kOaWimnAN-U Principle Used For Creating Electronic Charts https://youtu.be/xY_MBubhUFs Display of Electronic Charts https://youtu.be/qnoFO0T-cLo Route Planning With ECDIS https://...

0

Video Risk Involved When Unmooring Operation on Deck

published on 10 August 2020

Risk Involved When Unmooring Operation on Deck

0

Video A Day in the Life of a Marine Pilot (Australia)

published on 18 March 2024

As an island nation, over 98% of Australia’s trade moves through ports. At the heart of the trade supply chain are the North Queensland Bulk Ports Corporation (NQBP) marine pilots. These highly skilled maritime professionals make sure the vessels carrying goods through our ports travel safely and efficiently. Take a look at a day in the life of an NQBP marine pilot at one of Queensland’s multi-commodity ports, the Port of Mackay. Read more https://nqbp.com.au/about-us/news/articles/a-day-in-...

0

Video Port Revel Ship Handling in France | by National Geographic

published on 27 September 2020

They look like toy boats, but they serve a serious purpose. An outsider at this facility near Grenoble, France, may see grown men riding arounda lake in miniature ships. But these are pilots of the world's largest ships, and they're practicing navigation with meticulously engineered 1:25 scale models of real cruisers, tankers, and containerships. Port Revel Shiphandling Training Centre, in operation since 1967, has had more than 6,000 maritime pilots and merchant ship officers from all over...

0