Video

Theory behind Turning dynamics of ships


published on 6 May 2020 2304 -

Found on YouTube. Created by
"ISSIMS GmbH - Marine Prediction Technology"

SAMMON Lecturing Video describing

"Theory behind turning dynamics of ships"

-------------------------------------------------------------
SAMMON - the IDEAL tool to identify manoeuvring capabilities of a ship - SAMMON - learning the EFFECTIVE way

Comment by Gunter Schütze via LinkedIn:
"Prof. Benedict a very interesting video by HS Wismar / Maritime Simulation Center Warnemünde ( MSCW) & Innovative Ship Simulation and Maritime Systems GmbH (ISSIMS). Excellent and understandable the dynamic effects of the forces and moments in turning circle explained. A really good illustration for students, nautical officer and Captains to lead them to the dynamic basics and to refresh the knowldege. I can only recommend this video. Thanks for sharing."
Germany, Wismar

Join the conversation...

Login or register to write comments and join the discussion!
Knud Benedict Germany
on 21 December 2020, 11:49 UTC

Thanks to Gunter for the recommendations and Michael for bringing in ideas and questions. To answer your questions, I like to explain the following:
1) The transverse force Y(ß) can be explained by two models:
a. Either it can be seen from its nature as a Lift force, i.e. the same force who lifts an airplane wing up in the air, works now horizontally on the ship hull due to the drift angle ß. It is generated by the uneven force distribution caused by an additional circular flow around the body (wing, or here the ship’s hull). This lift force has it maximum close to the wing nose – this means for the ship it is working more to the bow, so it turns the ship: I made an additional movie on that effect at out ISSIMS website on YouTube (“Effect of Drift Force and unstable moment”, https://youtu.be/agQPMQNwhxU.)
b. A second way is to look at the effect of the transverse speed along the ship length (This as named as “Slender body theory”). You are right that the transverse speed distribution is constant. However, the force due this inflow is not constant: because of the friction in the flow there is a boundary layer around the ship which is getting thicker to the stern and therefore the transverse forces are smaller at the stern than on the bow – this model also explains why the bow turns to increase the drift angle, which is called as unstable moment.
2) The "additional force at the stern" Y(r) is not just the aft component of the above evenly distributed drift force. The rotation /Rate of Turn creates a linear transverse speed distribution with maximum at bow / stern and minimum / zero at the ships center. This has an effect which can be explained by the wing/lift model under a) as curved centerline of the wind profile
3) You are right: A centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path - so in case of the ship motion on a circle these are the forces due to drift Y(ß) and turning Y(r). These forces are balanced by the centrifugal forces (which is Ycentrifugal in the movie). The ship is able to move in a steady state motion - This is also an equilibrium condition at constant speed and also constant rate of turn.
I do hope my explanations are of some help for professional as you are. And I should underline that these are attempts of us as humans to understand the nature – that’s why I mentioned two models (there are even more…). And they are not “Laws” - even the equations of Newton and Einstein are not Laws, but they represent our current views and approaches to describe the nature with our brain in order to think and plan ahead (– and have to be checked and approved continoulsy in daily life). In this way I made some comments in my movie about “digital twins” as key maritime innovations (https://youtu.be/jYRq6xRrVUw) you can have I look if you like.
[show more]
0

Mr Michael Nicholson Shipmove Ltd., United Kingdom
on 7 May 2020, 09:43 UTC

I either; don't fully understand, or disagree. 1) Why must the working force (transverse force) Y(B) be acting close to the bow. The rudder is providing a moment, I don't see why/how the ship also provides a turning moment. The drift angle of the ship to its bodily movement is uniform. Surely the forces would be distributed evenly?
2) Is the "additional force at the stern" Y(r) not just the the aft component of the above evenly distributed drift force.
3) The use of the term Equilibrium, is this correct? For an object to describe an arc or a circle requires an acceleration towards the centre, caused by centripetal force. This is not in equilibrium. Equilibrium would be a straight line at uniform speed.
0

Read more...

Video Pivot Point Demo - HS Wismar

published on 10 July 2020

SAMMON Lecturing Video describing
"Pivot Point Demonstration"
-------------------------------------------------------------
SAMMON - the IDEAL tool to identify manoeuvring capabilities of a ship - SAMMON - learning the EFFECTIVE way

0

Video SAMMON Intro Ships Manoeuvring Predictions

published on 11 July 2020

SAMMON Introduction into Ships Manoeuvring Prediction
- newly made Video to display the principles of SAMMON

0

Video Knud Benedict Presentation on “Digital Twins” at IMLA SMU Seminar

published on 28 October 2020

This is the recording of the presentation with the title:
“Digital Twins" as Key Maritime Technology Innovations for MET - and for Operation of Intelligent Ships
It was held at the MET Training Course by Shanghai Maritime University on Oct 27 2020 on the occasion of IMLA 40th anniversary

0

Article BVT Chartering und Logistics GmbH with tugboat captains and marine pilots for training in the NAUTITEC ship simulator

published on 26 April 2021

n preparation for future heavy load transports with the heavy load pontoon "BHV INNOVATION", BVT Chartering und Logistics GmbH were guests in the NAUTITEC ship simulator together with the Bremerhaven

0

Article Securing pilot ladders at intermediate lengths

by Kevin Vallance deep sea pilot and author - published on 6 January 2020

Over the past few years a number of pilot transfer accidents have occurred resulting from total failure of the side ropes, one school of thought is that the methods of securing a pilot ladder is a factor in such occurrences.

0

Video Port of Los Angeles: Career RePORT - Port Pilots Edition

published on 8 May 2021

Career RePORT encourages all students and educators to submit questions you want to ask a Port of Los Angeles employee: what kind of job they do at the Port, how they entered their career field, who their favorite superhero is, or what they made for dinner last night. This episode features John Mayer, Port Pilot. In his role, John: - Drives the 400-meter container ships containing goods in and out of the Port every day. - Safely navigates the cruise ships that are transitioning to and...

0

Video Maneuvering information onboard - Pilot Card, Wheelhouse Poster and ...

published on 14 July 2020

This video explains the IMO resolution on the provision and display of maneuvering information on board ships, particularly the pilot card, wheelhouse poster and maneuvering booklet. the layout and contents of each are explained as well. Contents of this video will benefit mariners preparing for exams (written and oral examinations). Mariners will also benefit by watching the following videos: Duties of the SAR mission coordinator: https://youtu.be/9J3q6XczIGE Duties of the on-scene...

0

Video Pilot Ladder Promo Launch by KARCO

published on 18 June 2021

A unique 3D video endeavoring to raise the awareness of the seafarers about a very important, critical, and essential piece of equipment on board. Basic in design, but high on purpose, the mistakes incorrect handling of this equipment continue to result in Near Miss, Incidents and accidents.

0

Article Rope snapped: Marine Pilot accident in Durban, South Africa.

by Marine-Pilots.com - published on 29 April 2020

A 35-year-old male sea pilot of the Transnet National Ports Authority (TNPA) fell into the sea from a crude oil tanker near the N Shed Wharf in the port of Durban. A rope of the pilot ladder is said to have snapped for an undetermined reason when the man disembarked while leaving the crude oil tanker which was leaving the port of Durban.

0

Article Dyena SeaTRAX provides Pilot vessels with real time information

published on 6 April 2021

Dyena Systems announces the release of SeaTRAX to their range of vessel monitoring solutions.

Purposely designed to meet the requirements of Pilot vessels, SeaTRAX assists the vessel operator in the transit and transfer phase, allowing the skipper to monitor all motion parameters and make an objective assessment of the conditions.

0