Video

Wind Balance on straight track with theory


published on 24 November 2020 449 -

Found on YouTube. Created by "ISSIMS GmbH & Institute: Innovative Simulation".
Wind Balance on straight track - using SAMMON to learn the theory and the effect of rudder and drift to reach the balance in steady state equilibrium conditions on straight track. Limits of steerability will be shown and how turn under strong wind.
Wismar, Germany

Join the conversation...

Login or register to write comments and join the discussion!
Knud Benedict Germany
on 12 December 2020, 13:45 UTC

Dear Louis, I am very sorry that I could not be of help for you. Maybe I missed to underline in that movie that I was only focusing on the wind effect and took aside the small disturbances which need corrective steering – I found them not worth mentioning because I felt it would be self-understanding for professionals that this is obviously necessary. From my 45 years of experience in lecturing and simulator training for students to become navigators, and also for captains and pilots I know that there are two groups of professionals: those who are relying mainly on their “gut feelings” (and they can be very good at it), and those who try to understand the nature of processes and apply their knowledge to think ahead for avoiding critical situations (which you describes as “that made your hair stand on end”…) to be expected around the corner. And in that movie, I wanted to explain when bigger drift angle and another rudder angle is waiting for you after the next bend.
By the way: Your sample with the car is failing this most important effect I was talking about: If you would have very strong wind from abeam then even a car would need a drift angle and an additional steering wheel angle to compensate the wind effect – much stronger than the normal corrective steering you mentioned.
Finally I like to thank you for your offer to the academics / hydrodynamicists - I would be open for any remaining question and kind of ideas... Maybe you could have a look on our YouTube platform (search for ISSIMS) where are more movies which might be of help – the next one will be on wind effect on turning circles…
Best regards, Knud Benedict
[show more]
2

MP
Marko Purwin Lotsenbrüderschaft NOK II Kiel / Lübeck / Flensburg, Germany
on 1 December 2020, 12:50 UTC

Dear Louis,

I am an active marine pilot, and for me this video has a practical use! Therefore I would like to point out that you should not speak for everyone here ("basically this video tells us nothing at all"). I believe that the people on this platform are able to develop own opinions and assessments.

I have experience as an instructor and I know that it is a proven method to investigate effects first separately. Only after single effects/forces have been understood, it makes sense to become more complex (with your words "variable forces"). For example, if you want to train a boxer, you start with individual techniques and footwork before everything comes together in sparring. There are just different levels of professional development in training.

In our case of ship operations, mathematical theories and models make the difference between our ancestors in their rowing boats and today's modern technology. Such mathematical models are the accepted background of every modern simulation, no matter which manufacturer. In my opinion a denial of such models means the denial of scientific knowledge and stands for backward thinking.

If you have constructive ideas, questions and remarks, it could be an option for you to contact the author directly on youtube. Maybe he is even not aware that his video was posted here.

Capt. Marko Purwin
[show more]
1

LV
Louis Vest Houston Pilots, USA
on 26 November 2020, 16:01 UTC

If this is to be a forum for actual marine pilots there should be some practical use to a pilot for the information being presented. Basically this video tells us nothing at all. The basic failing point is that in an academic world one can put the rudder at a certain carefully calculated angle, hold that angle, and the ship will maintain course. Such an idea can only exist in a mathematical world. Variable forces constantly act on the ship nudging it one way or another and the heading must be corrected with opposite rudder to regain the course and then with a shift of the rudder to check the swing when the course is regained. This is a constant back and forth between the helmsman and the ship. Left only to her own devices the ship will get a little off, the forces change, she gets a little more off and you find yourself in a turn. If you think she will eventually find a stable heading you are mistaken. I have never tried it (being constrained by real world considerations), but if you leave the rudder in a constant position I suspect she will eventually settle into a large sine wave course many miles wide or a circle/oval turn. I know some that would quite quickly begin turning so fast that control of the vessel is lost.

For those who don't drive ships try driving your car with a constant steering position. Even on a desert road running straight and level for as far as the eye can see you can't just let go of the steering wheel and stay on the road. The driver is constantly making small adjustments.

Add to that the complications of narrow channels and an uneven bottom and you are already outside the known math models.

Lastly, every ship is different, every rudder is different and even the same ship can have an infinite variety of steering conditions depending on the current, wind, trim by the bow or stern and how deeply she is loaded. A pilot can come inbound on a ship and sail out the next day on the same vessel and she will steer totally differently.

If hydrodynamicists would like a useful project, give pilots a way to predict which ships will steer easily and which ones arrive at the sea buoy at the limit of controllability. I bet every pilot on this forum has had ships that made their hair stand on end. We only found out when making the first turn of the transit that she would begin turning sweetly but full over rudder was barely enough to stop her from turning. I have my ideas but it would be off topic. Let's see if any of the academics contact me about it.
[show more]
0

Read more...

Video How Ship Anchor Works? - Procedure For Anchoring a Ship at Sea

published on 11 July 2020

#Anchor #shipanchor #windlass Anchoring is one of the very frequent operations onboard ships. A number of variables and external factors influence the duration and location of an anchoring operation. While the type of seabed is of utmost importance during anchoring, soft muddy grounds or clay bottoms are best preferred. It should be taken care that the anchoring bottom is free of power lines, submarine cables, pipelines or rocks. Various methods on anchoring include consideration of...

1

Video How port pilot sail out ship from the port? Grimaldi lines catania roro ship

published on 22 April 2022

In this video I will show you Grimaldi Lines Catania RoRo Ship

0

Article New book: The Situational Awareness & The Port Pilotage Services

published on 8 February 2021

Serkan Kahraman and Yusuf Zorba have published a new book for marine pilots. In this book, maritime pilots and shipmasters’ situational awareness levels have been analyzed using a bridge simulator system and the results have been obtained.

2

Opinion Fathom Safety: "A Guide to Pilot Ladder Securing"

by Frank Diegel - published on 7 October 2020

Fathom Safety was established as a not for profit organisation dedicated to improving maritime pilot transfer safety. Here is a guide to pilot ladder rigging. We hope you like it!

3

Article Future Tug Master Training

by Henk Hensen - published on 11 July 2023

The role of a Tug Master undertaking harbour towage activities is a very specific one. He/she has to, alone or in cooperation with other Tug Masters, assist a ship in a safe and efficient way using his/her tug to the best of its qualities. 

1

Video Wind Impact on Ships Turning Motion

published on 20 January 2021

This video complements the earlier demonstration of wind effect on straight track and shows now wind effect on turning circles. It can be seen that during a turn under strong wind the ship reduces turning when it comes close to equilibrium on straight track - if the Wind-to-ship speed ratio is big enough then the ship even goes straight instead of turning. This is shown for three samples for Head, Stern wind and Beam wind. The turning can be increased if the ratio of Wind speed-to-ship...

1

Video P21 pilots4 0

published on 26 February 2021

Video de presentación del proyecto Pilots4.0 para la iniciativa Ports4.0. Proyecto P21-Pilots4.0

0

Video Suez Canal blocked: Strong wind or human error?

published on 28 March 2021

The operators of Egypt's Suez Canal say technical or human error could have caused a huge container ship to run aground. Engineers are working round the clock to refloat the Ever Given. The vessel has been blocking one of the world's busiest shipping lanes for the last five days. The chairman of the canal authority hopes a dredging operation will free the ship in the next few days.

0

Article Who is a Marine Pilot? Comment by Reshma Nilofer Naha

by Marine-Pilots.com - published on 16 September 2019

Comment and photos by Reshma Nilofer Naha
India's first female Marine Pilot (Kalkata Port Trust)

0